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Abstract
Assessments of forage productivity and quality during the growing season can
help livestock managers make decisions for adjusting stocking rate and managing
pastures. Traditional laboratory methods of forage quality determination are usually
time consuming and costly. Remote sensing may provide a rapid and inexpensive
means of estimating forage biomass and quality variables. Canopy reflectance
measurements were made, using a spectroradiometer, in five warm season
grass pastures during the 2002 and 2003 growing seasons to develop and validate
algorithms to predict above-ground biomass, neutral detergent fiber (NDF), acid
detergent fiber (ADF), and crude protein (CP) concentrations and CP availability
(i.e. CP concentration × biomass yield) of the pastures. Forage biomass correlated
(r 2 = 0.36, P < 0.0001) with a ratio of reflectance at 1145 and 1205 nm wavebands
(R1145/R1205). Crude protein concentration and CP availability correlated linearly
with R1695/R605 and R875/R735 (r 2 = 0.61 and 0.47, P < 0.0001), respectively. Although
NDF and ADF correlated significantly (P < 0.0001) with the reflectance ratios, the
best reflectance ratios only explained 13–35% of ADF and NDF variations. Multiple
regression (MAXR) models with a total of 10-waveband entrances improved the
relationships between forage quality and canopy reflectance values (r 2 = 0.27 − 0.74,
P < 0.0001). Validation of developed equations indicated that forage biomass, CP
concentration, and CP availability could be predicted using either the reflectances
at 10 wavebands or the two-band reflectance ratios. Pasture NDF could also be
predicted using the 10-band MAXR equation (r 2 = 0.58). Our results suggest that
biomass and major quality parameters of warm season grass pastures can be rapidly
and nondestructively predicted using canopy reflectance data.

Introduction
Pasture biomass productivity and quality values are crucial
in management of grazing lands and livestock. More accurate
and timely estimation of pasture biomass production and
forage quality during the grazing season can help livestock
managers make appropriate decisions of pasture fertilization
and stocking rate. Traditional methods of laboratory chemical
analysis have long been used for assessment of forage quality
(Kellems and Church 1998). Neutral detergent fiber (NDF),
acid detergent fiber (ADF) and crude protein (CP) concentra-
tions are commonly used forage quality variables (Ball et al.

2001). These three quality variables are closely associated with
intake potential, digestibility, and nutritive values of forage
(Ball et al. 2001). Laboratory chemical methods used to
determine these quality variables are time consuming and
costly, and also require personnel with special skills. Addi-
tionally, the hazardous waste generated from laboratory
processes must be disposed of in order to reduce the risk of
environmental pollution.

Near infrared reflectance spectroscopy (NIRS) was developed,
evaluated and used for determination of forage quality in the
mid-1970s (Norris et al. 1976; Clark 1989). Since then, NIRS
techniques have been increasingly used to quantify these forage
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quality parameters (Moore et al. 1990). Compared with chemical
procedures, NIRS analysis provides rapid and low-cost estimation
of forage nutrient composition (Marten et al. 1989; Shenk and
Westerhaus 1994). Although application of NIRS for determina-
tion of forage quality has great advantages compared to laboratory
chemical methods, the NIRS analysis still requires a period of
time for collecting, drying, and grinding vegetation samples.

Real-time measurements of reflectance at fresh leaf or
canopy scale may offer an alternative for estimation of plant
biochemical composition (Peñuelas and Filella 1998), espe-
cially leaf N and chlorophyll concentrations (Yoder and
Pettigrew-Crosby 1995; Sims and Gamon 2002; Zhao et al.
2005). Serrano et al. (2002) developed two reflectance indices
for assessments of vegetation nitrogen and lignin from AVIRIS
data. Remotely sensed data at leaf, canopy or landscape level
may be used to monitor plant physiology and biochemistry
(Chappelle et al. 1992; Curran et al. 1992; Peñuelas and Filella
1998; Daughtry et al. 2000; Peñuelas and Inoue 2000; Serrano
et al. 2002; Goel et al. 2003) and nutrient status (Read et al.
2002; Zhao et al. 2005), to detect environmental stresses
(Gausman 1982; Chappelle et al. 1992; Filella et al. 1995;
Blackmer et al. 1996; Ma et al. 1996; Voullot et al. 1998; Wang
et al. 1998; Takahashi et al. 2000; Carter and Estep 2002), and
to estimate yields of field crops (Ma et al. 1996; Plant et al.
2000; Reddy et al. 2003; Royo et al. 2003). However, similar
studies on estimation of forage quality parameters (i.e. CP,
NDF and ADF) using remote sensing are relatively limited. If
the forage quality variables and biomass production can be
predicted from nondestructive and timely measurements of
canopy reflectance in a few wavebands via a spectroradiometer,
it would further reduce laborious field sampling and sample
processing procedures and would allow fine-scale mapping
of the pasture productivity and nutritional status.

Changes in forage CP, NDF, ADF and above-ground
biomass should affect canopy spectral reflectance values
in a wide range of spectra 400–1695 nm, because plant canopy
spectral reflectance is influenced by ground coverage, photo-
synthetic pigment contents, chemical composition and leaf
structure (Campbell 1996; Peñuelas and Filella 1998; Kokaly
and Clark 1999). Richardson et al. (1983) used a hand-
held radiometer to determine relationships between canopy
reflectance values in red and near infrared wavebands and
biomass or nitrogen (N) content of Alicia Bermuda grass and
concluded that remote sensing would be useful for rangeland
management. Everitt et al. (1985) investigated the relationship
between leaf reflectance and leaf N concentration in buffelgrass
and suggested that leaf reflectance at 500 and 550 nm highly
correlated with leaf N concentration. More recently, Lamb
et al. (2002) reported that leaf reflectance in chlorophyll
red-edge (690–740 nm) could be used to estimate leaf N
concentration and total N content of ryegrass.

Based on canopy reflectance measurements, concentrations
of nitrogen, phosphorous, potassium, calcium and magnesium

in grass pastures can be predicated using continuum-removed
absorption features (Mutanga et al. 2004). Studies have docu-
mented that forage biomass or N uptake closely correlates
with the normalized difference vegetation index (NDVI)
(Frank and Aase 1994; Frank and Karn 2003; Moges et al.
2004), but the relationships follow cubic (Frank and Karn
2003) or exponential models (Moges et al. 2004), rather than
linear functions. It may be difficult to use a curvilinear or
nonlinear model for prediction because of the asymptotic
regions on the curves. Using modified partial least square
regression methods, Starks et al. (2004) determined the rela-
tionships between pasture canopy reflectance in 252 narrow
wavebands, covering the spectral region of 368–1100 nm,
and forage NDF, ADF and N concentrations of bermudagrass
(Cynodon dactylon, L.) pastures. They found that the forage
quality parameters could be predicted using pasture canopy
reflectance using the full wavelength range of the instrument.
However, expensive hyperspectral radiometers are not
practical for most livestock managers.

Starks et al. (2006) investigated correlations of forage NDF,
ADF and CP concentrations with pasture canopy reflectance in
broad wavebands of blue (450–520 nm), green (520–600 nm),
red (R, 630–690 nm), near infrared (NIR, 760–900 nm), NIR/R
and NDVI. They found that although the correlation coeffi-
cients of most measured forage quality variables with reflect-
ances in all the broad wavebands or the reflectance indices
(NIR/R and NDVI) are statistically significant, each could
only explain a small portion of variability in the forage quality
(i.e. small r2 values). Even though forage quality variables
can be accurately estimated using hyperspectral remotely sensed
data by integrating canopy reflectances in hundreds of narrow
wavebands (Starks et al. 2004), the most important wavebands
for forage quality estimation have yet to be determined and
it is not clear whether a small subset of wavebands could be
successfully used to predict the forage quality variables.

A 2-year experiment was conducted in five well-established
pastures in central Oklahoma, USA for the purpose of select-
ing up to 10 wavebands for each quality variable in order to
predict forage biomass, NDF, ADF and CP concentrations,
and CP availability. The specific objectives of this study were
to: (i) develop reflectance algorithms of each measured
forage quality variable or above-ground biomass based on
reflectance in a few selected wavebands or reflectance ratios;
and (ii) validate the algorithms and evaluate model accuracy
for real-time prediction of pasture nutritive values and
biomass production.

Materials and methods

Experimental location

The experiment was conducted at the USDA-ARS Grazinglands
Research Laboratory (35°32′N, 98°02′W), El Reno, Oklahoma,
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USA in the 2002 and 2003 growing seasons. Four monocultures
of perennial warm season bermudagrass pastures of Midland,
Ozarka, 74 × 12 − 12, and Common and one mixed pasture
that consisted of approximately 70% Common and 30% other
warm season grasses, were used for collection of biomass,
forage quality and remotely sensed data. These grass cultivars
are common in the Mid-South and South-East US livestock
production areas. All the pastures were established in 1991 or
1992 with similar field size (3.2 ha), soil type of Brewer silt
clay loam (fine-loamy, mixed, thermic Udic Rhodustalfs) and
production management. Fields of the monocultural Common
and the mixed pastures had a greater slope compared to the
others. Midland, Ozarka, 74 × 12 − 12 and the mixed pastures
were grazed by beef cattle with a similar stocking rate (3 head
ha−1), while the pasture of Common Bermuda grass was grazed
by sheep (6 head ha−1) during the experiment. Fertilizer
applications were based on soil test results and production
recommendations for pasture management. Vegetation
canopies of all the pastures completely covered the ground
during data collection. Each field was split into eight plots
for sampling. The plot size was approximately 0.4 ha.

Measurements

Canopy hyperspectral reflectances were measured on clear
days between 10.00 and 12.30 hours (CST) from the eight
plots in each pasture using a portable ASD FieldSpec FR
spectroradiometer (Analytical Spectral Devices, Boulder, CO,
USA) during the growing seasons between June and September.
The spectroradiometer measured canopy reflectance over
the 350–2500 nm wavelength range and at a 1-nm sampling
interval. The optical sensor of the spectroradiometer was
mounted on a boom 2 m above and perpendicular to the
soil surface. The radiometer had a 25° field of view (FOV),
producing a view area with a diameter of 0.89 m. A Spectralon
(Labsphere, Sutton, NH, USA) reference panel (white reference)
was used to optimize the ASD instrument prior to taking three
canopy reflectance measurements at each plot. The canopy
reflectance data were expressed as relative values by dividing
them by the white reference panel reflectance readings.

After the reflectance measurements were made in each
sampling location, all vegetation in a 0.25-m2 area within
the ASD FOV was immediately clipped within 1 cm of the
ground surface. Plant samples were transported to a laboratory
and immediately dried in a forced air oven at 65°C for 72 h,
weighed and then ground to determine the NDF, ADF and N
concentrations in dry ground materials. Quantifications of
forage NDF and ADF contents were based on the laboratory
standard procedures of forage quality analysis outlined by
Ankom Technology (Fairport, NY, USA). A detailed descrip-
tion of NDF and ADF determinations can be found at
www.ankom.com/09_procedures/procedures.shtml. Nitrogen
concentration was determined using an automated combus-

tion instrument (Leco, St. Joseph, MI, USA). Forage CP con-
centration was calculated by multiplying the N concentration
by 6.25 (Ball et al. 2001). Amounts of pasture CP availability
(kg ha−1) were estimated by multiplying above-ground
biomass by the CP concentration.

Data analysis

Reflectance values in three-wavelength ranges (i.e. 350–399,
1350–1449 and 1700–2500 nm) were first omitted from the
reflectance datasets due to instrument noise or location
of these wavebands within regions of atmospheric moisture
absorption. The remaining reflectance data were averaged across
10-nm wavebands, giving a total of 120 narrow wavebands
between 400 and 1700 nm. The spectral reflectance values
measured on the three adjacent points in each plot at each
sampling date were averaged. All the quality data and
corresponding reflectance values were pooled over pasture
fields, plots, sampling dates, and years (n = 414) in order to:
(i) determine relationships between the pasture biomass or
measured quality variables and canopy reflectance values or
reflectance ratios at different narrow wavebands (10 nm);
and (ii) develop reflectance algorithms for estimating pasture
NDF, ADF and CP concentrations and biomass. The pooled
data were randomly assigned into two equal-sized datasets,
one for calibration and the other as a validation dataset.

Co-linearity or the codependence of various parameters is
a major concern in multiple regression models, especially
in hyperspectral remote sensing data analysis. Under such
situations, the method of maximum r 2 improvement (MAXR)
is recommended (Yu 2000) and has been used for hyperspectral
reflectance data analysis (Goel et al. 2003). We used several
different regression methods to determine the best functional
relationships between forage quality parameters and remotely
sensed measurements of canopy reflectance. The three
methods used in this study were: (i) simple linear regression
(SAS 1997) of each forage quality variable with a selected
two-band reflectance ratio (Rband1/Rband2) that has the greatest
r 2 with the given quality parameter; (ii) multiple regression
with the MAXR (SAS 1997) with a total of 10-waveband
entrances; and (iii) partial least square regression with all the
120 wavebands (SAS 1997). Using the calibration dataset, all
possible two-waveband reflectance ratios were first generated
using SAS procedures (SAS 1997). Then simple correlation
coefficients (r) of each forage quality variable with the reflectance
ratios were determined. The reflectance ratios with the
greatest | r | for each forage quality parameter were selected.
Simple linear regression analyses were used to determine
relationships between the individual quality variables and the
selected reflectance ratios. The reflectance ratios or reflectance
values recorded in various wavebands were considered as
independent variables (x), and each of measured forage quality
parameters was the dependent variable (y). The MAXR option,
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under PROC REG in SAS statistical software (SAS 1997), was
used to carry out multiple regression analyses of the data.

All forage quality parameters in the validation dataset
were predicted based on the developed algorithms. Predicted
biomass, NDF, ADF, CP and CP availability were plotted
against the laboratory-measured results to evaluate per-
formance of the algorithms. The root-mean-square error
(RMSE) was calculated according to the following equation
to determine the precision of estimation (prediction errors)
between the measured values and predicted values:

where yi = the predicted values for a given quality
variable, yi = the true measured values, and n = the number
of tested samples.

Results and discussion

Forage quality

Maximum, minimum, mean, standard deviation, and coefficient
of variation (CV) for forage biomass and all measured quality
variables across pastures, measuring dates, and plots in the
2002 and 2003 growing seasons are presented in Table 1.
Averaged across pastures and sampling dates, above-ground
biomass in 2002 and 2003 was 4.09 and 3.13 Mg ha−1, respec-
tively; NDF, ADF and CP were 67, 33 and 9.4% of dry weight,
respectively, in 2002 and 74, 34 and 8.3% of dry weight,
respectively, in 2003. In 2002, CP availability was 383 kg ha−1

while in 2003 it was 259 kg ha−1.
Among the five quality variables, NDF and ADF showed

the smallest variation with CV of 4.9 and 2.7%, and 5.8 and
6.7%, respectively, in 2002 and 2003 (Table 1). Although the
forage ADF concentration was comparable in the two growing
seasons, the pastures in 2003 had a 10% higher NDF con-
centration, 12% lower CP concentration, 23% lower biomass
and 32% lower CP availability, compared with the results in
2002. The differences in these forage quality variables between
years could be associated with weather conditions, especially

precipitation and air temperature (Starks et al. 2006), during
plant growth and development. Total annual precipitation at
the experimental location in 2003 (475 mm) was much lower
than that in 2002 (794 mm). Less precipitation in the second
growing season, accompanied with a higher air temperature,
negatively affected pasture growth, biomass productivity and
other forage quality parameters. The effects of precipitation and
temperature on forage quality have been well summarized
(Ball et al. 2001).

Relationships between reflectance ratios and 
forage quality

The reflectance ratio most highly correlating with a forage
quality variable (i.e. with the greatest r 2) was selected and linear
regression analysis was performed. The linear equations
and r 2 values between measured forage quality variables and
respective reflectance ratios for all the quality parameters,
derived from the calibration dataset, are presented in Table 2.

Table 2 The best wavebands (± 5 nm) selected from reflectance ratio calculation of the calibration dataset for determining of their linear relationships
with forage NDF, ADF, CP, above-ground biomass (BM), and CP availability. The respective linear models and coefficients of determination (r2) are
also presented (n = 207)

Quality parameter Waveband Equation r2

NDF (% of BM) 1695, 1645 NDF = −263.83(R1695/R1645) + 330.72 0.35
ADF (% of BM) 1275, 1195 ADF = 60.93(R1275/R1195) − 32.11 0.13
CP (% of BM) 1695, 605 CP = 2.075(R1695/R605) + 0.107 0.61
Biomass (Mg ha−1) 1145, 1205 Biomass = 21.474(R1145/R1205) − 19.599 0.36
CP availability (kg ha−1) 785, 735 CP availability = 1046.1(R785/R735) − 1050.9 0.47

RMSE  ( )= −





=
∑ yi i
i

n

y n2

1

Table 1 Descriptive statistics of neutral detergent fiber (NDF), acid
detergent fiber (ADF), crude protein (CP), above-ground biomass
(BM), and CP availability of warm season grass pastures across
genotypes and measuring dates in 2002 and 2003

Parameter NDF (%)
ADF
% of BM

CP
% of BM

Biomass 
(Mg ha−1)

CP availability 
(kg ha−1)

2002 (n = 224)
Maximum 75.3 38.6 19.44 8.97 996.7
Minimum 57.2 26.4 4.84 1.04 64.8
Mean 66.9 32.7 9.43 4.09 383.2
SD 3.3 1.9 3.04 1.55 185.4
CV (%) 4.9 5.8 32.17 37.9 48.4

2003 (n = 190)
Maximum 78.0 41.3 15.07 8.05 964.8
Minimum 67.2 28.1 3.81 0.59 38.6
Mean 73.9 33.7 8.32 3.13 259.4
SD 2.0 2.3 2.37 1.44 143.9
CV (%) 2.7 6.7 28.55 45.9 55.5

SD = standard deviation; CV = coefficient of variation.
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Similar to previous reports in relationships between plant
leaf N or chlorophyll concentration and reflectance measure-
ments (Carter and Spiering 2002; Read et al. 2002; Zhao
et al. 2005), using two-band reflectance ratios could improve
the linear relationships between forage quality parameters
and canopy reflectance measurements, as compared with
the reflectance at single waveband (data not shown).
Although the reflectance ratios R1695/R1645, R1275/R1195,
R1695/R605, R1145/R1205, and R785/R735 had the largest linear
correlation with NDF, ADF, CP, biomass and CP availability
(P < 0.0001), respectively, these reflectance ratios could
only explain 13–61% of variation of the forage quality
variables. Of these forage quality variables, ADF had the
poorest relationship with R1275/R1195 (r 2 = 0.13), while CP
concentration had the strongest linear relationship with
R1695/R605 (r 2 = 0.61).

Earlier studies on a number of plant species indicate that
plant tissue N or CP concentration in dry, ground materials
was most highly correlated with reflectance at wavelengths
between 1200 and 2400 nm (Kokaly 2001). The absorbance
peaks of protein or N are between 1020 and 2300 nm (Fourty
et al. 1996; Serrano et al. 2002); however, in field settings
moisture in plant tissue and in the atmosphere interferes with
canopy reflectance in the wavelength ranges of 1350–1450 nm
and 1800–1980 nm. Therefore, wavebands commonly used
in estimation of N from dry, ground samples are less useful
for forage N estimation from canopy reflectance measurements.
The close relationships between forage CP concentration and
live plant canopy reflectance ratio of R1695/R605 in the present
study may be helpful in avoidance of interference of moisture
on plant tissue CP prediction.

Multiple regressions with MAXR

The best 1–10 wavebands for each forage quality variable and
corresponding r 2 values, model intercepts and partial regression
coefficients are presented in Table 3. As expected, the MAXR-
derived models showed an improvement with an increasing
number of wavebands selected (Table 3). More specifically,
the r 2 values of NDF and ADF improved from 0.12 and 0.08,
respectively, with the best one-waveband reflectance model
to 0.72 and 0.27, respectively, when the best 10 wavebands
were used. Crude protein concentration, above-ground
biomass production, and CP availability were sufficiently
associated with reflectances in the first five selected wavebands.

Figure 1 Comparison of laboratory measured forage quality variables
of (a) neutral detergent fiber (NDF), (b) acid detergent fiber (ADF),
(c) crude protein (CP) concentration, (d) above-ground biomass, and (e)
CP availability in the validation dataset (n = 207) with their predicted
values based on the equations developed with the reflectance ratio in
Table 2. The coefficients of determination (r2) and the root-mean-square
error (RMSE) are presented.
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Table 3 Useful wavebands for 1–10-reflectance variable regression models developed from the method of maximum r2 improvement (MAXR) for estimating NDF, ADF, CP, above-ground BM, and CP
availability (CPA) of warm season grass pasture (n = 207). The r2 values, intercepts, and partial regression coefficients (the value in parenthesis) of the models are presented

Quality
variable r2 Intercept

Selected waveband (nm) 

1 2 3 4 5 6 7 8 9 10

NDF (%) 0.115 81.6 1335 (−33.1)
0.174 71.0 1195 (−576.2) 1255 (541.3)
0.297 76.7 1175 (1831) 1185 (−2590) 1225 (720)
0.326 74.6 455 (119.5) 1175 (2265.3) 1185 (−2986) 1225 (676.9)
0.374 72.2 465 (159.2) 1175 (2362) 1185 (−1780) 1195 (−2803) 1215 (2170)
0.598 71.1 825 (115.3) 985 (−139.6) 1545 (−263) 1645 (2562) 1675 (−1263) 1685 (−1056)
0.612 69.9 795 (−348.7) 825 (530.8) 985 (−230.5) 1535 (−309) 1645 (2751) 1675 (−1251) 1685 (−1204)
0.627 69.9 795 (−349.3) 825 (513.4) 985 (−2084) 1565 (−824) 1605 (1017) 1645 (2119) 1675 (−1260) 1685 (−1055)
0.632 70.4 795 (−744.4) 825 (1084) 915 (−187.7) 985 (−200.1) 1555 (−642.1) 1605 (174.7) 1645 (2106) 1675 (−1235) 1685 (−1100)
0.720 71.0 635 (−5463) 645 (7496) 675 (−2141) 805 (−1192) 825 (1691) 895 (−450.6) 1155 (−326.7) 1165 (260.1) 1635 (1000) 1695 (−942.8)

ADF (%) 0.076 36.4 735 (−11.1)
0.114 35.2 605 (51.1) 715 (−31.2)
0.122 34.3 605 (74.7) 715 (−44.9) 835 (4.13)
0.187 35.0 1045 (−516.1) 1055 (532.2) 1155 (−35.3) 1475 (23.4)
0.209 34.5 1045 (−465.9) 1055 (480.5) 1225 (−230.8) 1245 (188.2) 1545 (27.4)
0.227 34.8 1045 (−582.6) 1055 (1025) 1065 (−427.4) 1225 (−242.2) 1245 (202.5) 1505 (27.6)
0.240 34.4 1045 (−567.9) 1055 (1023) 1065 (−437.9) 1215 (370.8) 1225 (−869.5) 1245 (451.6) 1545 (30.0)
0.249 33.9 905 (32.5) 1045 (−664.8) 1055 (1037) 1065 (−400.6) 1215 (400.2) 1225 (−910.4) 1245 (482.6) 1505 (28.3)
0.258 33.4 925 (41.0) 1045 (−583.3) 1055 (970.1) 1065 (−705.6) 1075 (289.5) 1215 (387.7) 1225 (−926.7) 1245 (498.5) 1545 (32.7)
0.269 32.9 925 (47.2) 1045 (−580.9) 1055 (943.7) 1065 (−736.1) 1075 (338.6) 1215 (435.4) 1225 (−1000) 1245 (522.3) 1495 (−258.7) 1505 (292.6)

CP (%) 0.376 14.2 605 (−86.5)
0.540 7.95 605 (−136.9) 1695 (38.6)
0.591 7.47 505 (311.7) 605 (−308.4) 1685 (34.2)
0.619 8.21 495 (326.0) 605 (−267.2) 1645 (−430.4) 1675 (449.3)
0.702 12.4 715 (−80.1) 1165 (−255.5) 1195 (715.0) 1285 (−712.8) 1295 (312.0)
0.706 11.9 445 (46.5) 715 (−87.0) 1165 (−225.9) 1195 (683.7) 1285 (−679.5) 1295 (280.5)
0.711 12.5 525 (171.3) 565 (−136.7) 715 (−76.2) 1165 (−242.3) 1195 (697.4) 1285 (−684.2) 1295 (285.4)
0.713 12.5 525 (173.9) 565 (−139.9) 715 (−74.9) 1165 (−250.5) 1195 (712.9) 1285 (−869.4) 1295 (600.9) 1305 (−138.1)
0.734 12.1 505 (192.9) 575 (−72.7) 715 (−81.8) 955 (−15.7) 1165 (−161.7) 1195 (614.6) 1285 (−384.7) 1615 (−232.8) 1685 (214.6)
0.738 11.9 505 (217.3) 565 (−91.7) 715 (−84.4) 745 (20.7) 935 (−25.5) 1165 (−143.7) 1195 (572.9) 1285 (−366.8) 1615 (−236.6) 1685 (219.9)
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BM (Mg ha−1) 0.223 138.3 875 (−1667)
0.368 179.8 1145 (−4439) 1215 (1225)
0.475 82.8 1135 (−1280) 1215 (24204) 1285 (−11860)
0.543 118.9 1055 (−634) 1215 (−11501) 1315 (21272) 1485 (−10187)
0.565 137.7 1055 (−1661) 1205 (7015) 1265 (−21022) 1305 (25907) 1485 (−12024)
0.571 110.1 1055 (4751) 1205 (−3609) 1265 (11238) 1305 (−28002) 1465 (32284) 1485 (−15400)
0.576 121.9 1045 (9850) 1055 (−13586) 1205 (3797) 1265 (11093) 1305 (−27260) 1465 (32067) 1485 (−15724)
0.592 105.3 565 (15613) 725 (−24618) 1055 (15591) 1215 (−6976) 1265 (13242) 1305 (−31131) 1465 (33784) 1485 (−15646)
0.607 103.8 595 (20415) 685 (−31009) 735 (20136) 1005 (−9198) 1215 (13512) 1265 (−24407) 1305 (−25388) 1465 (55786) 1485 (−19163)
0.610 93.3 595 (7253) 485 (−72362) 735 (135415) 1005 (−67370) 1215 (−21567) 1265 (117418) 1305 (−282811) 1325 (92184) 1465 (121322) 1485 (−26733)

CPA (kg ha−1) 0.376 −174.6 785 (1282)
0.502 119.0 735 (−3625) 795 (3222)
0.522 61.3 735 (−5589) 755 (3798) 1145 (1256)
0.591 22.7 725 (−3693) 895 (5069) 1265 (−39160) 1295 (36929)
0.613 184.2 725 (−4126) 885 (4277) 1175 (10565) 1265 (−46096) 1295 (34588)
0.621 212.6 725 (−3915) 765 (1422) 1075 (4206) 1185 (−11541) 1265 (−50102) 1295 (35995)
0.626 223.0 725 (−4230) 765 (13630) 775 (−12899) 1055 (6520) 1195 (11572) 1265 (−57815) 1295 (42239)
0.632 222.9 725 (−4156) 765 (17367) 775 (−16803) 1075 (18616) 1095 (−12610) 1185 (11156) 1265 (−57505) 1295 (43003)
0.640 234.2 735 (−6010) 765 (19362) 785 (−17108) 1075 (17506) 1095 (−11323) 1185 (11102) 1265 (−58620) 1295 (44921) 1475 (−1144)
0.644 255.9 735 (−5889) 765 (18951) 785 (−16765) 1075 (17668) 1095 (−11708) 1185 (11313) 1265 (−56491) 1295 (42810) 1465 (6080) 1475 (−7187)

Quality
variable r2 Intercept

Selected waveband (nm) 

1 2 3 4 5 6 7 8 9 10

Table 3 Continued
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When wavebands were increased from one to five, the r 2

values of CP concentration, biomass and CP availability
were increased to 0.70, 0.57 and 0.61 from 0.37, 0.22 and 0.38,
respectively (Table 3). When an additional five wavebands
were entered into the models, r 2 values changed little. These
results indicated that each of the forage quality variables
could be estimated using canopy reflectance in a few (5–10)
wavebands.

Partial least square regression

Partial least square (PLS) regression can be a useful tool when
there is no practical need to limit the number of measured
factors in the prediction equation (Tobias 1995). Similar to
the earlier report (Starks et al. 2004), the PLS models were highly
significant for all the measured forage quality parameters in
the present study (data not shown). The PLS regressions in
our study only slightly improved model performance (i.e. r 2)
compared with multiple MAXR regression with 10-waveband
entrances for all the measured forage quality variables. For
instance, the PLS regression and cross-validation, reflecting
model performances, of data in the calibration dataset indicated
that the r 2 between measured and predicted values of NDF,
ADF, CP, biomass and CP availability were 0.52, 0.21, 0.75,
0.60 and 0.61, respectively. The RMSE of the cross-validation
was 3.1% for NDF, 1.9% for ADF, 1.4% for CP, 1.05 Mg ha−1

for biomass, and 125.3 kg ha−1 for CP availability (data not
shown). Results from the PLS regression further suggested
that the variation of each forage quality variable mainly
correlated with canopy reflectances in 5–10 wavebands rather
than all the 120 wavebands.

Algorithm validation

Each forage quality variable in the validation dataset was
predicted using the equations in Table 2, based on the corre-
sponding reflectance ratios. Scatter plots were used to further
compare forage quality variables predicted by the respective
equations of reflectance ratios with laboratory measurements
(Figure 1). Among the five forage quality variables, CP con-
centration (Figure 1c) and CP availability (Figure 1e) could
be well predicted using selected simple reflectance ratios with
r2 values of 0.64 and 0.57 (n = 207, P < 0.0001), respectively.
Although the RMSE between measured and predicted NDF and
ADF were small (1.9–3.8%; Figure 1a,b), both of NDF and ADF
were overestimated when laboratory measured values were

Figure 2 Comparison of laboratory measured forage quality variables
of (a) NDF, (b) ADF, (c) CP concentration, (d) above-ground biomass and
(e) CP availability in the validation dataset (n = 207) with their predicted
values based on the equations developed from the MAXR multiple
regression of reflectances with the 10-waveband entrances. The
coefficients of determination (r2) and the RMSE are presented.
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low and underestimated when measured values were high.
Additionally, both had smaller r 2 values (0.16–0.27) as compared
with CP concentration or CP availability. Similarly, the relation-
ship between measured and predicted above-ground biomass
was relatively poor (r 2 = 0.36) with a larger RMSE (Figure 1d).

Compared to simple linear models of reflectance ratios,
the multiple regression models of MAXR with 10 wavebands
considerably improved prediction accuracy of forage quality,
except for ADF which had a small r 2 value (Figure 2b). Low
correlation of the canopy reflectance with ADF of pastures
(Tables 2 and 3) and poor ADF prediction (Figures 1b and
2b) in the present study were probably associated with small
variation in ADF (see Table 1). These results also indicated
that it might be difficult to accurately predict bermudagrass
forage ADF using canopy reflectance measurements even in
10 narrow wavebands.

Takahashi et al. (2000) examined various multivariate
regression methods for prediction of rice crop dry weight and
N accumulation using canopy hyperspectral reflectance and
concluded that partial least square regression was the most
useful among the models tested. In the present study, all PLS
regression models developed from the calibration dataset
were validated using data from the validation set to test the
model efficiency and accuracy. Scatter plots of laboratory
measured versus predicted for all the forage quality variables
are presented in Figure 3. Compared to MAXR regression
models with 10-waveband entrance in Figure 2, the PLS
regression models incorporating all 120 wavebands did not
improve prediction precision and accuracy of any forage
quality variables (Figure 3). These results further indicate
that when canopy reflectance is used to predict forage quality
variables, reflectance at most wavebands contribute little to
accurate prediction, and that a maximum of 10 wavebands
for each quality variable is probably sufficient for the forage
quality estimation.

In general, canopy reflectance depends not only on leaf
morphological and biochemical characteristics of species
(Daughtry and Walthall 1998; Mutanga et al. 2004), but also
on the degree of vegetation canopy closure because exposed
soils directly affect canopy reflectance features (Huete et al.
1985; Otterman et al. 1995). It should be noted that, in the present
study, vegetation canopies of all the pastures were closed. Thus,
any influence due to soil reflectance was minimized. There-
fore, when extending our findings to other forage species or
to more open canopies of grass pastures, soil effects on plant
canopy reflectance must be taken into account.

Figure 3 Comparison of laboratory measured forage quality variables
of (a) NDF, (b) ADF, (c) CP concentration, (d) above-ground biomass and
(e) CP availability in the validation dataset (n = 207) with their predicted
values based on the equations developed from partial least square
regression of reflectances with an involvement of all the 120 wavebands.
The coefficients of determination (r2) and the RMSE are presented.
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Conclusions
The results of this study demonstrate the potential of using
canopy reflectance data to estimate forage quality variables of
warm season grass pastures. We compared several different
methods of data analysis for prediction of the forage quality
using canopy reflectance measurements. Simple reflectance
ratios in specific narrow wavebands may be useful for timely
prediction of live pasture CP concentration, above-ground
biomass or CP availability. However, the relationship between
the reflectance ratios and NDF or ADF content was poor.
Compared to partial least square regression with all the
120 wavebands, MAXR multiple regression incorporating 5–
10 wavebands produced similar coefficients of determination
(r 2) and RMSE for prediction of the pasture biomass produc-
tion and quality parameters (such as CP and NDF concentra-
tions and CP availability). The ADF of the pastures had
poor correlation with canopy reflectance data in all analysis
methods used in this study due to a small range of variation.
These results indicate that hyperspectral remote sensed data
obtained from canopy or from landscape may offer a fast and
inexpensive method for timely and nondestructive prediction
of some major forage quality parameters.
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